

GJXDM Query Options
(Draft)

March 12, 2004

Benjamin Shrom

Jack Wallace

© Georgia Tech Research Corporation

Atlanta, Georgia 30332-0832

Georgia Tech Research Institute

Preface:
This paper was developed by an independent group of GTRI researchers not funded or directly affiliated
with the Global Justice XML Data Model team. This group has gained practical experience through
implementation initiatives utilizing the GJXDM. This paper is an expansion of a research paper written in
August 2003. The intent of this paper is to share lessons learned and to engage the community in
dialogue leading to a sound set of recommendations and best practices.

GTRI/ITTL/CSITD 2004 Draft

Georgia Tech Research Institute

Table of Contents:

1 Introduction..1
2 Cross-Enterprise Information Sharing Issues...1
3 Query Mechanisms ..3

3.1 Templates ...3
3.2 Language..6
3.3 Decision Points: Templates versus Language..7

4 Query Language Layers ...8
4.1 RDF and RDF Query ...8
4.2 OWL Web Ontology Language ...11

5 Query Language Review..11
5.1 XQuery/XQueryX..13
5.2 SQL/XML ..20
5.3 Justice XML Query Language (JXQL)..22
5.4 OWL-QL (Formerly DQL – DAML Query Language)...25
5.5 QEL (Query Exchange Language)...26
5.6 SQL-like RDF query languages (RDQL, SquishQL, rdfDB, RQL, SeRQL).28
5.7 Turtle - Terse RDF Triple Language ...30
5.8 D2R (Database 2 RDF Map)..31
5.9 Versa ..32
5.10 Other Languages ..33

6 Comparison of Query Languages ..34
7 Conclusions..35
8 References ..37

GTRI/ITTL/CSITD 2004 Draft

Georgia Tech Research Institute

1 Introduction
The GJXDM provides a standard way for the Justice community to represent data, including relationships
among various “pieces” of data. However, the use of GJXDM to represent data solves only part of the
information-sharing problem. How can someone ask a question? The GJXDM is a data dictionary and
data model; it does not have any inherent data query capabilities. As a result, query mechanisms must be
devised that can utilize the GJXDM for the stating of queries. There are a number of issues regarding
how to generate queries based on the GJXDM. These queries are intended to be passed between
enterprises, agencies or even applications. How the responder processes these queries is up to the
responder; queries can be processed by custom code and converted to a native query, passed through
middleware, or perhaps even run directly against a database. Some queries may be processed so they can
be passed to another application, for example converting an incoming query into an NLETS transaction.
This paper uses the term data source to refer to the logical data repository or the application that is being
asked the question.

Query mechanisms range from simple templates to full-blown query languages. Is there a one-size-fits-all
solution, or are there different solutions for different cases? If the Justice community standardizes on one
(or a small number) of query mechanisms, does that mean that anyone could technically query anyone
else who maps their data to the GJXDM? How do different enterprises utilize the GJXDM and a query
mechanism to facilitate information sharing across enterprises, or agencies?

This paper provides background on a number of standard or proposed query mechanisms that could be
used by the Justice community in conjunction with GJXDM. There are many query mechanisms out there
in various stages of completion. We are not trying to cover every single candidate in depth, but to
evaluate the most promising. This paper also discusses issues regarding information sharing across
enterprises using one or more standard query mechanisms.

2 Cross-Enterprise Information Sharing Issues
The use of GJXDM in conjunction with one (or more) “standard” query mechanism(s) simplifies data
sharing across enterprises, but does not completely solve the problem. (We use the term “enterprise”
here, but the same issues may arise if two applications or data sources in the same enterprise want to share
information.) There are two primary technical issues that must be addressed for cross-enterprise
information sharing. There are undoubtedly more technical and political issues, but only these two are
addressed here.

First, the GJXDM is a very large model, with many data elements. Most, if not all, users of the GJXDM
will subset the model in some fashion to make the model more manageable for their purposes. So if two
enterprises don’t have the same “set” of elements in their schemas, how can they query each other? There
are a couple of ways to approach this. For the purposes of this paper, we use the term “client application”
to mean the originator of the query. This may be a user tool forming the question and sending it out, or it
may be a system forming a question to send to another system.

Option A: Each could build the query using the responder’s schema, so that no question is asked that is
not valid on the responder side. This requires that each enterprise have knowledge of other’s schema.
This also means that if many enterprises want to share information, each client application has to be able
to build slightly different queries using many different schemas. This is illustrated in Figure 2-1. As a

GTRI/ITTL/CSITD 2004 Draft Page 1

Georgia Tech Research Institute

rudimentary example, assume that Enterprise A uses a GJXDM subset that includes a person’s birth date
but not the person’s age, and Enterprise B uses a GJXDM subset that includes age but not birth date.
Depending on how much additional logic has been put into Enterprise A’s client application, it can choose
not to ask the question at all since it cannot ask it exactly as specified, or ask it without birth date, or it
could calculate a rough birth date based on the age information it has. This may not seem like a big
problem, but if there are many places where the schemas for Enterprise A and B do not agree, then there
are either a lot of questions that cannot be asked, or there has to be a lot of extra logic in the code that
generates the query. When you add in more than two enterprises that want to pass queries to each other,
then there is even a bigger problem when the schemas do not exactly match. So if you add in Enterprise
C that does not include a middle name, then Enterprise A may have to formulate one query to Enterprise
B that does not include birth date but does include middle name, and a different query to Enterprise C that
does not include middle name but does include birth date. All of this extra formulation comes at a price.

Enterprise A

Client (site)
App/web svr

Enterprise B

Proprietary Query

Enterprise B

Proprietary Response

Site
Proprietary
Message

Site
Proprietary
Message

Enterprise B
Data Source

Enterprise X
Data Source

Enterprise X
 Proprietary Query

Enterprise X
Proprietary Response

.

.

.

Figure 2-1 - Query/Response Flow using Responder’s Schema

Option B: Each could build the query using their own (or some common, mutually agreed on) schema,
which means the responding enterprise would have to do their best to respond properly. This is illustrated
in Figure 2-2. In order for the responder to validate the incoming query, the originator’s schema would
have to be available. In addition, the responder would have to be robust enough to handle a query that
includes elements that are not mapped to the responder’s data. This does not mean it has to do any fancy
handling or guessing of what the originator wants, but it needs to either do the best it can with the fields it
understands or to respond with some usable message that basically says it could not handle the query as
stated. The response could come back using the originator’s schema or the responder’s schema,
depending on the implementation. It makes more sense to use the responder’s schema, since the client
application can ignore the fields that are not in it’s schema, saving the responder from having to do
special processing for each originator. Using the example above, Enterprise A would ask the query using
both middle name and birth date; Enterprise B does what it can with the fields it understands, and
Enterprise C does the best it can as well. What these enterprises do may be to ignore incoming fields and
process what they can, or they may just bounce back the query with some message that says they could
not process the question as asked. But ignoring fields on the back end or returning “I cannot handle what
you sent” seems much easier to implement than a client application that has to look in multiple schemas
to form multiple questions.

GTRI/ITTL/CSITD 2004 Draft Page 2

Georgia Tech Research Institute

Enterprise A

Client (site)
App/web svr

Common Query

Enterprise B Response
Site

Proprietary
Message

Site
Proprietary
Message

Enterprise B
Data Source

Enterprise X
Data Source

Common QueryEnterprise X Response

.

.

.

Figure 2-2 - Query/Response Flow using Originator (or Common) Schema

The second big issue is that the GJXDM provides a great deal of flexibility, which is an asset as well as a
liability. The GJXDM allows objects to be “connected” in more than one way. There are 3 basic
relationship mechanisms in GJXDM, each with its own strengths and weaknesses. There is a separate
paper discussing these mechanisms, detailing advantages and disadvantages, so we will only cover the
basics here. Assume we are trying to find a person from a particular state. This query could be formed by
a user application where the user fills in a form to do this, or maybe from a system reporting tool that
generates reports on the number of sex offenders in a state. One way of representing this query in
GJXDM is to use the Person element and Person/Residence element. A second way to represent it is to
use Person and Person/ResidenceReference, where the reference points to a Residence element in the
instance. A third way is to use the element Relationship to refer to a Person element and a Residence
element. If Enterprise A utilizes the Person and Person/Residence in their schema, and Enterprise B
utilizes Relationship, neither will be able to properly handle data from the other without developing extra
logic that handles both methods.

3 Query Mechanisms
There are two basic paradigms for stating queries: query templates and query languages. Both are valid
ways of forming queries, depending on the nature of the questions being asked and in some cases the
answer expected. This chapter describes each paradigm in a general way, and then summarizes decision
points that can be used to determine which solution is best for a given situation. In order to simplify
notation, the examples shown below use generic names instead of GJXDD element names or XPaths.

3.1 Templates
A query template, in its simplest form, is a list of fields or elements that can be queried on. It is
analogous to a form that a user would fill out. Templates have minimal structure; maybe nothing more
complicated that punctuation or some sort of delimiter. There is some rudimentary syntax, maybe as
simple as a specific ordering or a list of field names followed by the values to be matched.

3.1.1 Usage
Templates provide a simple mechanism for stating questions. Templates are used in many data
applications today, whether the underlying data model is XML or not. Templates work very well if there
are a limited number of simple queries that need to be performed. What do we mean by simple? In
essence, a simple query is one that can be conclusively defined, either by the use of a list or a template

GTRI/ITTL/CSITD 2004 Draft Page 3

Georgia Tech Research Institute

where the application essentially fills in the blank. For example, let’s say an application requires first
name and last name in a query, and there is a fixed list of optional fields that can be included in the query,
such as sex, hair color, eye color, height, weight, and age. That is still a pretty simple query, even though
there are a lot of possible permutations. You could define that query as a list:

First name – required
Last name – required
Sex – optional
Hair color – optional
Eye color – optional
Height – optional
Weight – optional
Age – optional

There are any number of ways to state the syntax for a template, from using XML-like tags to an ordered
list with some sort of delimiters. One possible syntax for the template might be:
 First name, last name [,sex] [,hair color] [,eye color] [,height] [,weight] [,age]
Where the [] denote optional elements.

Templates lose some of their allure when the queries start to get more complicated. Templates may
become difficult to manage if the list of possible elements starts to get really long, for example 10
possible person fields seems a lot easier to manage than 100; although the number of fields does not add
greatly to the complexity of the template. Templates may not be the best solution if some elements can
only be included if another element is included (if you provide age, you have to provide a +/- range), or if
you want to put ranges on dates or numbers, or you want to use an OR (last name Smith or Jones), or you
want a best match (last name, first name, middle name and not all fields have to be matched), or you want
to do modifiers like soundex, etc. This is not to say templates cannot be used in any of these cases, but
that as things start to add up, templates start getting more complex. For example, using the previously
noted example, you could allow soundex on last name and a range value for the age:
 First name, last name [,soundex], [,sex] [,hair color] [,eye color] [,height] [,weight] [,age] [,range]

A query using this template might look something like (note the extra comma since the sex field is not
used):
 Bill, smith, soundex, , brown, blue, 67, 180, 33, 3

If queries are allowed on any element in a GJXDM Person, the template becomes very large and
unwieldy. However, if queries are limited to a small subset of Person, such as shown above, a template
would not be so unwieldy.

Templates also become unwieldy when there are a lot of modifiers and/or a lot of mixing and matching.
For example, an application allows all the fields listed above, but soundex is allowed on both or either the
first and last name, age, height, and weight can have ranges, queries on partial matches such as “begins
with” or “contains” are allowed, multiple colors can be provided (e.g. blue or green eyes), etc. These
could still be stated as templates, but the templates look suspiciously like a language. The example below
is just one of many ways to build a template for this query, this syntax happens to depend on a specific
order and delimiter.

GTRI/ITTL/CSITD 2004 Draft Page 4

Georgia Tech Research Institute

 First name soundex | begins with | contains | =
 ,last name soundex | begins with | contains | =
 ,[sex]
 ,[hair color] [,hair color] …
 ,[eye color] [,eye color] …
 ,[height [range]]
 ,[weight [range]]
 ,[age [range]]

Using line breaks for clariry, a query stated using this template might look like:
 b begins with
 ,smith soundex
 ,
 ,brown
 ,blue
 ,67 3
 ,180 10
 ,33 3

The expected response may also impact whether a template is practical. If a template must include not
just a definition of what can be in the query, but also what can be requested in the response, templates
again start looking like a language. For many queries, what you get back is what the responder says you
get back. In other words, you cannot specify what elements you want back, you just get what the query
processor on the back end gives you based on the kind of query you did. For example, if you have an
application that takes a name in and produces a response that provides the address that corresponds to the
name, the templates do not need to take into account what the requestor wants back; they get an address.
If the requestor provides a name, and can specify that they want address or vehicle information back, the
template starts getting more complex.

If an application allows, or will allow in the future, ad hoc queries where the requestor can build any kind
of query, templates are impractical.

3.1.2 Processing
Since templates are defined based on the needs of an application or a user community, there are no
industry standard templates for querying data. Standard templates could be defined for a user community,
such as the Justice community, which could allow for some re-usable components. But otherwise, any
development done using templates requires complete custom coding. If someone has worked with query
templates in one job, that experience probably does not significantly reduce the learning curve of working
with templates at another job.

Since templates are customized for an application or a user community, there is not going to be any
industry support for a particular set of templates. In other words, companies like Oracle and IBM are not
going to build processing capabilities into their products to support a particular set of templates. So
implementers have to work from scratch. However, since templates are generally simple, the
programming should not be terribly complex. If a well-defined set of templates can be established for a

GTRI/ITTL/CSITD 2004 Draft Page 5

Georgia Tech Research Institute

certain set of transactions, such as NLETS, industry vendors might build templates into the domain
specific product lines.

3.2 Language
What we think of as a language is much more formal than a template. A language has syntax and
semantics, may allow much more complex content, and generally has more flexibility in what can be
stated.

3.2.1 Usage
A query language provides a very powerful mechanism for stating queries, but this power comes at a price
of added complexity. A full query language provides mechanisms for doing very complex queries, and
even ad hoc queries, against a data source. For example, SQL is an industry standard query language for
use against relational databases. As an example, if we want to do a SQL query against a person and get
back address information, and we want to use of lots modifiers, a SQL query against a database might
look something like:
 SELECT P.firstname, P.lastname, A.streetname, A.city, A.state, A.zipcode
 FROM PERSON_TABLE P, ADDRESS_TABLE A, PERSON_ADDRESS_LINK L
 WHERE firstname LIKE ‘b%’

AND SOUNDEX(P.lastname) = SOUNDEX(‘smith’)
AND P.haircolor = ‘brown’ AND P.eyecolor = ‘blue’
AND P.height BETWEEN 64 AND 70
AND P.weight BETWEEN 170 AND 190
AND P.age BETWEEN 30 AND 36
AND L.person_id = P.id
AND L.address_id = A.id;

This is certainly not a simple query, and could be done with a template. However, the language syntax is
well defined and just about any question can be stated, and just about any response can be requested.
Building a template that can do the query above results in a template that is complex enough that it really
is a language.

Use of a language also provides the capability to perform ad hoc queries. For example, a requestor could
state a query using any elements in the model, and depending on the power of the query processor on the
back end, the query could be processed. Even if initial implementations of an application use simple
queries, if the application is expected to expand to allow complex or ad hoc queries, implementers may
want to use a query language from start to finish.

Combining the query language with templates may mitigate the complexity of a query language, while
allowing for relatively complex queries and providing a growth path for even more powerful queries in
the future. For example, if an SQL application did not want to support the full power of SQL nor allow
access to all fields in the database, SQL queries could be “templated”. For example, the fields in the
SELECT clause of the SQL statement could be limited to a certain subset of fields, which also limits the
FROM clause. In addition, the fields allowed in the WHERE clause could be limited to certain fields, and
perhaps further limited to only using “=” and “soundex”; no “between” or “like” allowed. This has two
potential benefits. (1) If the language used is a standard, enterprises may be able to find designers and
developers familiar with the language, which may reduce the learning cycle. (2) The application could be

GTRI/ITTL/CSITD 2004 Draft Page 6

Georgia Tech Research Institute

expanded in the future to allow more complex queries and even ad hoc queries without having to re-do as
much code or documentation.

3.2.2 Processing
Depending on the language, support may be available from vendors. SQL is an industry standard (and
supported) query language for relational databases, and once it became a standard, database and
middleware vendors incorporated direct support into their products. At least one query language for XML
data does have industry support, and therefore some vendor products could be used in implementation;
reducing the amount of custom code that has to be written. Other languages are either too new, or are
used by too small an audience, to be supported directly by available middleware or databases. Some
languages may not be directly supported by industry, but tools and application may exist from the
language proponent or the open source community. If direct support and/or tools are not available for a
language, then all processing must be done manually. This may not be as onerous as it sounds. For
example, if a language is stated as XML, then an XML parser can be used to assist with processing so that
a language-specific parser does not have to be developed.

Even if a query language has industry support and is included as a feature in database products,
implementers may not want to just pass a query instance directly to the database. Business rules must
generally be applied to queries, depending on their source. For example, an enterprise would probably
not want a SQL query generated by an outside enterprise or application to be run directly against a
database; so just because a database supports a query language does not mean queries should be run
directly against the database. So rules may need to be applied to the incoming query to modify it to
include business rules, or perhaps the results from running the query must be processed. Implementers
may want to insert custom logic prior to processing queries in order to ensure proper business rules are
applied rather than passing the query into an engine and doing post-processing.

One other benefit to using a standard language, versus templates or a proprietary language, is that if a
developer used that language in a previous job, the learning curve is reduced in a new job. For example,
if someone used to use SQL on an Oracle database at one job, there would not be as great a learning curve
if they needed to use Oracle against DB2 (or better yet Oracle again) at a new job.

3.3 Decision Points: Templates versus Language
The following summarizes decision points that may be useful when deciding whether to implement using
templates or a full-blown language.

When to use Templates
Simple queries
Requestor cannot specify response fields
Limited number of fields that can be queried
Limited number of fields with modifiers such as soundex, begins with, date/number range, etc.
Do not need to do fuzzy queries such as ORs or best match

GTRI/ITTL/CSITD 2004 Draft Page 7

Georgia Tech Research Institute

When to use a Language
Complex queries or ad hoc queries
Requestor can specify response fields
Large number of fields that can be queried
Large number of fields with modifiers such as soundex, begins with, date/number range, etc.
Need to do fuzzy queries such as ORs or best match

There may not be a cut-and-dried answer to whether to use one or the other; an implementation may have
some characteristics that align better with templates and other characteristics that align with using a
language. Some points above are stronger indicators than others. For example, a long list of fields in a
template does not complicate matter nearly as much as a long list of fields with modifiers. There may
also not be a “yes” or “no” answer to the questions. For example, maybe an application accepts name
information as a query, and can provide either person information or address information in the response.
The decision points above indicate using a language in that case, but it is a very limited specification of
response fields and can certainly be handled by a template if other indicators point to using templates. In
addition, an evaluator might look at these decision points and decide that what they are planning to
implement this year meets all the criteria for using templates. However, if what is planned for further
releases falls more into the language criteria, a query language may be the best way to go even in the first
phase to reduce code and documentation changes in later phases.

4 Query Language Layers
RDF and OWL are less mature and less well-known technologies than XML and XML Schema.
Therefore, this chapter provides a short overview of RDF and OWL, which form the basis for a number of
the query languages discussed later.

4.1 RDF and RDF Query
Since the first release of RDF specifications in 1999 by the W3C, there have been many reports published
on RDF query languages. However, none of these reports are directly applicable regarding the feasibility
of using any RDF query language for querying the GJXDM. At the present moment there is no “official”
RDF query language because there is no consensus about what RDF query is. Only one RDF query
language has been proposed to the W3C, and that was very recently. However, several implementations
and specifications are available, primarily from the academic community.

GTRI/ITTL/CSITD 2004 Draft Page 8

Georgia Tech Research Institute

Some RDF background may be in order before we introduce specific RDF Query Languages. Figure 4-1
shows how RDF builds upon XML and XML Schema.

RDF

RDF Schema

XML

XML Schema

Instances

Semantics

Syntax, Data

Structure

Figure 4-1- RDF and XML Building Blocks

Every point on the 2-dimensional geometric plane can be described by the pair of coordinates X and Y. In
a similar fashion we can use the Element Name and Element Data pair to describe our data in XML (for
example, <email>chief@foo.com</email>). XML Schema defines encoding of Data Elements in XML
and the description of the structure fore XML. XML Schema provides structural cardinality and data
typing for XML such as element types, element names, content model, structure, and local element usage
constraints. However to show the relative location using the intersection of geometric planes, we have to
introduce another coordinate Z (a third dimension). The same way, in order to show the relationships
between various objects/classes in XML, we have to add another value to our XML data pair: “predicate”.
XML then becomes a Resource Description Framework (RDF). In the GJXDM case, RDF helps to define
the relationship between objects, such as a Person and a Vehicle. For example: a Vehicle has an Owner
(which is a Person), or Person owns a Vehicle. RDF does not stop at high-level objects (such as Car and
Person). The framework goes all the way to the deepest level of every object, describing relationship
between them. For example “Person has SSID”.

Each RDF statement can consists from one of the following triplets:

<subject, verb/predicate , object>

<object1, relation, object2>

<resource, property, property-value>

Where: Subject is a noun in the phrase and is the doer of the action; Object is a noun as well, and is what
is being acted upon; the Predicate is the verb that provides the action. In “Person has SSID” the Subject is
defined by Person, Predicate is the verb “has”, and the role of Object is assigned to “SSID”. It is
important to point out that all RDF statements are “directional”. For example in the statement “SSID
belongs to Person” , a Subject role will be performed by SSID element, Object will be assigned to the
Person element, and Predicate will be “belongs to”.

GTRI/ITTL/CSITD 2004 Draft Page 9

Georgia Tech Research Institute

An RDF/RDFS statement has a very specific graphical representation: a directed, labeled, possibly cyclic,
graph, where nodes are the objects and each edge is a predicate/verb, describing the relationships between
the objects. That leads us to the simple idea for the structure of the RDF query language. In order to state
the question we need to “describe an RDF graph with parts missing, assign those parts variable names,
and specify the binding between the elements”. Several RDF query languages, such as RDFdb QL,
Algae, RDQL, RDFql, have different syntaxes, however they employ the same idea. RDF Query
languages also contain various methods for querying RDF schema information such as subclass and
subproperty. [1].

A question that comes up is – an RDF instance is XML, right? Then, why don’t we use an XML query
language like XQuery/XPath for querying an RDF model, instead of reinventing the wheel? The answer
lies in the flexibility of RDF model. The same RDF statement can be expressed by many different XML
forms, which makes an XPath/XQuery question valid in one case and invalid in another. In order to be
able to ask a question in XPath/XQuery, it is necessary to normalize RDF. The closest analogy would be
comparison of a tree representation versus a graph. In the tree there is only one unique path to get to a
specific leaf node, while in a directed cyclic graph (such as RDF) there can be several paths leading to the
same end node. The normalization problem in GJXDM can be solved by subsetting to eliminate multiple
paths to the leaf nodes in the model.

The RDF community has been quiet on the RDF query language standardization issue. Even after a
proposal is submitted, it will take several years before any standard will be specified, and resemblance of
the final result to the original submission may be superficial at best. Due to the lack of a standardization
effort, many RDF query languages have emerged, and almost every language has a corresponding project
implementation. A majority of the RDF query language projects have been developed by European
academic community, with a few from the United States academic community; there have been few
submissions by industry. Languages can be categorized by a large number of characteristics, however we
will concentrate on the Query Model, Goal (variable object/predicate, literal evaluations, Boolean
expressions, Node selection methods such as pattern matching, SOUNDEX), Returned Results, and
Query Serialization characteristics.

The criteria for the selection of the “best of the bunch” includes:
 - Capability to query GJXDM (vs. RDF)

- Extensibility of the language. (If the language does not embed node pattern matching constructs
such as “soundex”, “begins-with”, “contains”, etc.)

 - Simplicity and ease of implementation
- Commercial and Open Source product availability

 - Industry standard (“to be” – how long before it matures, will it ever mature)

RDF queries have two major forms of serialization: XML (RDF, non – RDF), and ASCII (N3 notation, s-
expression, SQL). ASCII serialization is human friendly, however, it is preferable to have XML based
syntax, since there are no reliable industry available tools or RDF query processing engines (each
available engine is using proprietary RDF query language).

As it was mentioned earlier, majority of the RDF Query languages share the same Query Model, where
the question is stated in the form of the Graph with missing Nodes (Subjects, Objects) or Edges
(Predicates).

GTRI/ITTL/CSITD 2004 Draft Page 10

Georgia Tech Research Institute

4.2 OWL Web Ontology Language
OWL is a W3C Recommendation dated February 2004. OWL was been developed by the Web Ontology
Working Group as part of Semantic Web research. OWL is a revision of the DAML+OIL web ontology
language and incorporates lessons learned from the design and application of DAML+OIL. “OWL is
intended to be used when the information contained in documents needs to be processed by applications,
as opposed to situations where the content only needs to be presented to humans. OWL can be used to
explicitly represent the meaning of terms in vocabularies and the relationships between those terms. This
representation of terms and their interrelationships is called an ontology. OWL has more facilities for
expressing meaning and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these
languages in its ability to represent machine interpretable content on the Web.” [17] In terms of the
diagram in Figure 4-1, OWL sits on top of RDF Schema, providing higher semantics. “The Semantic
Web is a vision for the future of the Web in which information is given explicit meaning, making it easier
for machines to automatically process and integrate information available on the Web. The Semantic Web
will build on XML's ability to define customized tagging schemes and RDF's flexible approach to
representing data. The first level above RDF required for the Semantic Web is an ontology language what
can formally describe the meaning of terminology used in Web documents. If machines are expected to
perform useful reasoning tasks on these documents, the language must go beyond the basic semantics of
RDF Schema.” [17]

Since OWL is built upon RDF and RDF builds upon XML, a query language that works on OWL should
be applicable to the GJXDM. However, since OWL is so new, little has been done on developing query
mechanisms for OWL representations. We review one such OWL query language in this paper.

5 Query Language Review
This chapter provides information on a number of query languages that could be used by implementers
utilizing the GJXDM. This chapter does not discuss every possible language that could be used to query
GJXDM-formatted data. XQuery (XML Query Language) and SQL/XML (an ANSI/ISO standard) are
XML-focused languages that are emerging standards with relatively broad industry support; these are
covered in detail here. While the GJXDM is not RDF, it incorporates features from RDF. Therefore,
query languages targeted for RDF may be appropriate for queries against the GJXDM. There are many
RDF-focused query languages that have been proposed in recent years as part of Semantic Web research.
Since there is not a standard RDF query language, this paper covers a number of RDF query languages
that we have discovered in our research. In addition, GTRI initiated preliminary design effort in the
summer of 2003 on a query language, called JXQL (for Justice XML Query Language), which was
intended to meet the specific needs of the JusticeXML community; this language is also covered. This
chapter provides an overview of what appears to be the strongest candidates and discusses possible
methods to access and query heterogeneous data sources. Advantages and disadvantages of each
candidate will be provided. Discussion of each candidate also includes a sample of commercial tools that
could be used for implementation, and available information on vendor support from a short list of major
database and middleware vendors; specifically IBM, Oracle and BEA.

The features required for a query language depend on the needs of the application or the user community.
We have tried to determine a list of query features that appear to provide the kind of query flexibility that
can be found in other query languages like SQL. There are a number of other query capabilities that are
not standard in industry query products such as SQL, but that are used in query applications through

GTRI/ITTL/CSITD 2004 Draft Page 11

Georgia Tech Research Institute

custom coding. We have attempted to determine how well each query language handles these desired
query features. These features are described below.

• Exact match on a single field – This is the typical query capability, for example: Last name
equals Smith. Exact on a single field.

• Matches using Or – This allows fuzzier searches. For example, searches on a person whose last
name is Smith and first name is either John or James. Some query applications also allow flip-
flop queries, which are generally handled by the use of OR. A flip-flop query is useful if the
searcher is not sure how someone’s name was entered into the system, because of different
representations for some foreign names, or the use of dashes in names, or even confusion over
whether something is a first or middle name. For example, someone whose name is Jane Marie
Doe might be in a data source as Jane Marie Doe or Marie Jane Doe. Sometimes UNION is used
in place or OR.

• Soundex (or Sounds Like) – This allows matching on words that sound like other words. There
are algorithms that calculate a soundex value for a word, and these values can be compared instead
of comparing the exact word. Not all databases use the same algorithm, so queries need to state
that they want to match using soundex rather than specifying the soundex value.

• Begins with – This allows searches on partial words or text. For example, someone might want to
search on license plate numbers that start with a set of characters.

• Ends with – This allows searches on partial words or text, in this case at the end of a word.
• Contains – This allows searches on partial words or text, in this case anywhere in the word. For

example a license plate that has “123” in it somewhere.
• Range – Dates and numbers may have ranges. For example, someone who is 30 years old, plus or

minus 3 years; or someone who weighs 200 pounds, plus or minus 10 pounds.
• Diminutive – Names frequently have diminutive versions. For example, someone named Bill

might also be knows as Billy, or William, or Will. This feature is not part of any database
products we are aware of, but is usually done as a look up in a table; i.e. look up diminutive
versions of Bill and perform the search using all of them.

• All fields must match – Generally, searches are done where all specified fields must be matched.
For example, if someone specifies last name Smith and first name John, they want all data
returned to be people with the first name John and last name Smith. This is how most databases
work.

• Best match – In a best match, not all fields must match. So for a best match search on first name
John and last name Smith, the data source would return first all data where the person has the
name John Smith. Then the data source could return all records where the first name is John OR
the last name is Smith. None of the major database vendors support this directly. Generally
multiple searches have to be performed on the various combinations. So even if a query language
does not support this in its syntax, a query could be built using OR, however, the query could
become very complex depending on the number of search fields. Best match usually implies a
scoring or weight capability, so that matches on some things count more than matches on other.
For example, a match on hair color is not as “strong” a match as one on last name. Best match
without weights does not seem particularly useful.

GTRI/ITTL/CSITD 2004 Draft Page 12

Georgia Tech Research Institute

5.1 XQuery/XQueryX

5.1.1 Overview
XQuery is a standard query language published by the W3C, with the latest working draft dated
November 2003. [2] XQuery was designed to query a broad spectrum of XML information sources such
as XML enabled databases and XML documents. Additional middleware enables the XQuery language to
operate against relational databases. XQuery is derived from an XML query language called Quilt, which
in turn borrowed features from several other languages, including XPath 1.0, XQL, XML-QL, SQL, and
OQL. XQuery Version 1.0 is an extension of XPath Version 2.0. The type system of XQuery is based on
XML Schema. XQuery uses “FLWOR” syntax format (for, let, where, order by, and return), which
makes the language look more like standard SQL.

The XML Query Language has more than one syntax binding. The XQuery language syntax is
convenient for humans to read and write. The XQueryX syntax is expressed solely in XML in a way that
reflects the underlying structure of the query. [3] Work on the XQueryX standard is somewhat behind
work on XQuery, although a new working draft was released in December 2003. The remainder of this
paper focuses on XQuery.

In June 2003, IBM and Oracle submitted JSR 225 (Java Community Process, http://www.jcp.org) to
“Develop a common API that allows an application to submit queries conforming to the W3C XQuery 1.0
specification and to process the results of such queries”. [4] JSR implementation will bring XQuery to the
new level of officially implemented standard (like JDBC).

Issues with XQuery include:

• XQuery by itself requires the constructor of a query to know the structure of the data source. To
overcome this problem, additional abstraction layers of “data views” can be introduced (see
XQuery engine implementations from IBM and BEA). Optionally, an implementer can parse the
XQuery and convert it directly to query against a specific data source. So for the Justice
community, queries would be constructed using GJXDM instead of an XML representation of the
underlying database.

• The introduction of additional abstraction layers decreases the performance of the system.
Currently there is no data available to estimate the performance impact of using XQuery.

• Most implementations of the XQuery engine are not mature and do not represent a complete
solution to the problems listed above.

• The current version of XQuery does not support the use of weights, which are necessary to
directly handle queries such as best match, where not all search terms have to be matched to get
data back. There is a proposal for a “SCORE” (weighting) capability to be added to a future
version of XQuery.

• The current version of XQuery does not support soundex or diminutive queries although there are
possible workarounds. There are proposals for handling queries using dictionaries and thesauri
(which would handle soundex and diminutive) to be added to a future version of the XQuery.

• The language is relatively complex since it was devised as a processing language instead of just a
way to state a query. Therefore, there are multiple ways to state the same question.

GTRI/ITTL/CSITD 2004 Draft Page 13

http://www.jcp.org/

Georgia Tech Research Institute

5.1.2 Example
The example listed below shows access to the data in a relational database using XQuery. “A relational
database system might present a view in which each table (relation) takes the form of an XML document.
One way to represent a database table as an XML document is to allow the document element to represent
the table itself, and each row (tuple) inside the table to be represented by a nested element. Inside the
tuple-elements, each column is in turn represented by a nested element. Columns that allow null values
are represented by optional elements, and a missing element denotes a null value.” [5]

Suppose there is online auction relational database that contains three tables:

USERS (USERID, NAME, RATING)
ITEMS (ITEMNO, DESCRIPTION, OFFERED_BY, START_DATE, END_DATE, RESERVE_PRICE)
BIDS (USERID, ITEMNO, BID, BID_DATE)

Tables can be converted to the XML view by using 1-to-1 default table-to-xml mapping provided by most
database manufacturers (for example XSU utility from Oracle):

<items>
 <item_tuple>
 <itemno>1001</itemno>
 <description>Red Bicycle</description>
 <offered_by>U01</offered_by>
 <start_date>1999-01-05</start_date>
 <end_date>1999-01-20</end_date>
 <reserve_price>40</reserve_price>
 </item_tuple>
 <!-- !!! Snip !!! -->

<users>
 <user_tuple>
 <userid>U01</userid>
 <name>Tom Jones</name>
 <rating>B</rating>
 </user_tuple>
 <!-- !!! Snip !!! -->

<bids>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1001</itemno>
 <bid>35</bid>
 <bid_date>1999-01-07</bid_date>
 </bid_tuple>
 <bid_tuple>
 <!-- !!! Snip !!! -->

Suppose someone needs to list the item number, description, and highest bid (if any), for all bicycles,
ordered by item number. The resulting XQuery would look like:

GTRI/ITTL/CSITD 2004 Draft Page 14

Georgia Tech Research Institute

<result>
 {
 for $i in doc("items.xml")//item_tuple
 let $b := doc("bids.xml")//bid_tuple[itemno = $i/itemno]
 where contains($i/description, "Bicycle")
 order by $i/itemno
 return
 <item_tuple>
 { $i/itemno }
 { $i/description }
 <high_bid>{ max($b/bid) }</high_bid>
 </item_tuple>
 }
</result>

The XML result would look like:

<result>
 <item_tuple>
 <itemno>1001</itemno>
 <description>Red Bicycle</description>
 <high_bid>55.0</high_bid>
 </item_tuple>
</result>

For more examples see http://www.w3.org/TR/xquery-use-cases/ website.

5.1.3 Available Tools and Support

5.1.3.1 ORACLE OJXQI
OJXQI is a Java API for XQuery proposed by Oracle that can be used to execute and fetch results from
XQuery queries against single XML documents or an Oracle database.

Oracle has introduced several enhancements to the standard XQuery, which can be considered drawbacks
since it then becomes a proprietary Oracle XQuery feature:

• Support for SQL queries to be embedded inside XQuery.
• Support for bind variables, so as to not re-execute the XQuery for every constant change.
• Support for XQueryX - an XML representation of the XQuery language - for ease of mechanical

generation and translation of XQuery.

The product depends on the following: XDK 9.2.0.1.0, XSU 9.2.0.1.0, JDK 1.3, and JDBC1.3 (if used
with Oracle).

It is unclear from the prototype whether a user can run a query against an XQuery defined view and how
it will be processed.

Oracle does not provide any information about upcoming releases.

5.1.3.2 IBM XML FOR TABLES
“XML for Tables provides functions for creating XML views of relational tables in such a way that the
SQL data are treated as if they are virtual XML documents and they can be queried in XQuery.

XML for Tables does this by automatically mapping the data of the underlying relation database system
to a low-level default XML view. User can then create application-specific XML view on top of the

GTRI/ITTL/CSITD 2004 Draft Page 15

http://www.w3.org/TR/xquery-use-cases/

Georgia Tech Research Institute

default XML view. These application specific view are created using XQuery. Another significant feature
provided by XML for Tables is the ability to query User defined XML views of relational databases using
XQuery.

XML for Tables translates XQuery into SQL and pushes down SQL to DB2. SQL queries produce output
in tuple format; XML for Tables tags the tuple result into XML; so the XQuery results are in an XML
document.

XML for Tables is wrapped as DB2 stored procedures, and queries are submitted by calling the stored
procedures. ” [6]

There are two major disadvantages in XML for Tables
• DB2 specific (may be possible to overcome by using the Information Integration DB2 suite)
• Released under limited license. It is currently a beta product and expires 90 days from download.

It is not a commercial product yet and there is no technical support.

The example listed below [7] shows use of XQuery with XML for Tables:

a) Purchase Order Database and it’s default XML view

order item payment
id custname custnum
10 Foo Construction 7734
9 Western Builders 7725

oid desc cost
10 generator 8000
10 Pum p 24000

oid due cost
10 1/10/01 20000
10 6/10/01 12000

 <db>

<order>
<row> <id>10 </id> <custname> Foo Construction </custname> <custnum> 7734 </custnum> </row>
<row> <id> 9 </id> <custname> Western Builders </custname> <custnum> 7725 </custnum> </row>

</order>
<item>

<row> <oid> 10 </oid> <desc> generator </desc> <cost> 8000 </cost> </row>
<row> <oid> 10 </oid> <desc> backhoe </desc> <cost> 24000 </cost> </row>

</item>
<payment>
 …
</payment>

 </db>

GTRI/ITTL/CSITD 2004 Draft Page 16

Georgia Tech Research Institute

b) User defined XML view and resulting XML

create view orders as (
 for $order in view(“default”)/order/row
 return
 <order>
 <customer> $order/custname </customer>
 <items>
 for $item in view(“default”)/item/row
 where $order/id = $item/oid
 return
 <item>
 <description> $item/desc </description> <cost> $item/cost </cost>
 </item>
 </items>
 <payments>
 for $payment in view(“default”)/item/row
 where $order/id = $payment/oid
 return
 <payment due=$payment/date>
 <amount> $payment/amount </amount>
 </payment> sortby(@due)
 </payments>
 </order>
)

<?xml version="1.0" encoding="UTF-8"?>
<order>
 <customer> Foo Construction </customer>
 <items>
 <item>
 <description> generator </description>
 <cost> 8000 </cost>
 </item>
 <item>
 <description> Pump </description>
 <cost> 24000 </cost>
 </item>
 </items>
 <payments>
 <payment due='1-10-01'> <amount> 20000 </amount> </payment>
 <payment due='6/10/01'> <amount> 12000 </amount> </payment>
 </payments>
</order>

c) Query over user defined XML view.

for $order in view(“orders”)

let $items = $oder/items

where $order/customer like “Foo%”

return $items

XML for Tables allows queries of the GJXDD model using XQuery and can be implemented for broad
use if XTABLES is removed from IBM:Alphaworks development state to production and support for
other information sources is enabled and/or if use of the Information Integration IBM software suite
proves feasible. Since XTables pushes much processing down to the database engine, this solution has
the potential for fast performance. This also makes it more difficult to provide for other databases, at least
with the same performance advantages, since versions for other databases would require extensive
customization to push the processing down into another vendor’s database engine.

GTRI/ITTL/CSITD 2004 Draft Page 17

Georgia Tech Research Institute

5.1.3.3 IBM XML EXTENDER/NET.DATA
DB2’s XML Extender provides new data types to store XML documents in DB2 databases along with
functions that assist in working with these structured documents. Retrieval functions (based on DB2
stored procedures) allow retrieval of either the entire XML document or individual elements or attributes.

XML Extender uses a document access definition (DAD) to map XML elements and attributes to DB2
tables. The DAD can be used for indexing elements and attributes for fast structural search, or for
creating XML documents from DB2 data, or shredding and storing XML data in DB2.

XML Extender supports sending and retrieving XML documents from MQSeries message queues. The
software also supports Web Services with Web Services Object Runtime Framework (WORF) Beta.

The software is included in DB2 Universal Database, Version 7.1.

Also, an XML document can be generated from SQL queries against DB2 or any ODBC compliant
databases using Net.Data. Net.Data is a full-featured scripting language, which allows access to the
following information sources: DB2, Oracle, DRDA-enabled data sources, ODBC data sources, flat files,
and web registry data. Net.Data is a no-cost feature of most versions of DB2.

This approach could be used in multiple GJXDD solutions: adaptation of XTABLES for other relational
information sources, or in JXQL query engine implementation.

System drawbacks are:

• Unknown performance of the system
• XML Extender implementation requires use of XTABLES (see below), which is still in the alpha

development stage (not commercially released and not supported product).
• Solution could lock implementers into IBM’s proprietary solution.

5.1.3.4 BEA LIQUID DATA FOR WEBLOGIC
BEA offers a single product solution for access and querying of heterogeneous data sources – “BEA
Liquid Data for WebLogic is a data access and aggregation product for Information Visibility, allowing a
real-time unified view of disparate enterprise data.” [8]

BEA Liquid Data for WebLogic provides the following capabilities:

• Universal data access – Using XML translators and optimized XML queries, Liquid Data can
retrieve and query data from relational databases, Web Services, Web sites, flat files, XML files,
and other data sources, returning results in XML format.

• Abstract Data Views – Liquid Data provides a virtual abstraction layer to aggregate distributed
data sources as an integrated, logical view. For developers, these logical views of aggregated
datasets can be thought of as a single, virtual database.

• Expose and Share Web Services – Liquid Data allows deployment of Data Views as a Web
Services

• Liquid Data provides developer with GUI tools for rapid application development.
• BEA Liquid Data for WebLogic is based on the BEA WebLogic Server.
• Liquid Data implements XQuery standard as a basic coding language, providing a platform for

building and processing XQuery queries.

GTRI/ITTL/CSITD 2004 Draft Page 18

Georgia Tech Research Institute

Figure 3

BEA Liquid Data represents a possible implementation solution for XQuery and GJXDD. BEA Liquid
Data has several appealing features that IBM’s XTABLES is missing:

• Fully released and supported product. BEA has already released a second version of Liquid Data.
• Heterogeneous data source integration.

The following disadvantages exist in the Liquid Data solution:

• License fees
• Unknown performance of the system – the degree of optimization for specific databases is

questionable
• Locks implementers into a solution available only from one software vendor
• Requires use of the BEA Weblogic Application Server

For more information, see the documentation page at:
http://dev2dev.bea.com/products/liquiddata81/index.jsp
Or the product page at:
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/liquid_data/

5.1.4 Conclusion
XQuery represents a generic XML query language, which is expected to be widely adopted. However
due to the recent release of the standard, not many vendors support XQuery to the full extent. XQuery can
be used for querying databases with the help of middleware tools such as IBM’s XTABLES and BEA’s

GTRI/ITTL/CSITD 2004 Draft Page 19

http://dev2dev.bea.com/products/liquiddata81/index.jsp
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/liquid_data/

Georgia Tech Research Institute

Liquid Data. These tools are in early stages and in general have not matured yet. There are no estimates
for the performance impact of using these middleware tools. XQuery can also be used without
middleware tools and converted directly into native queries, although this requires potentially significant
custom coding. Regardless of the implementation method, XQuery instances will have to be built
assuming the GJXDD as the underlying data source to ensure isolation of the query from the data source
implementation. Workarounds will be required to handle soundex and/or diminutive queries. The
language is relatively complex and may be difficult to convert directly into native queries.

5.2 SQL/XML

5.2.1 Overview
SQL/XML is a standard that emerged from ANSI and ISO SQL. [9] SQL/XML is an extension to SQL --
using functions and operators -- to include processing of XML data in relational stores. SQL/XML is the
preferred way to query and manipulate XML when data is a mix of structured and semi-structured, and
there is a need to use enterprise (SQL) tools with existing standards (SQL and SQL/XML). The
definition of SQL/XML is driven by the SQLX Group, which is sponsored by IBM, Oracle (XDK for 9i),
Microsoft (SQLXML 3.0), and Sybase.

“SQL/XML defines a mapping from tables to XML documents. The mapping may take as its source an
individual table, all of the tables in a schema, or all of the tables in a catalog. The mapping takes place on
behalf of a specific user, so only those tables that contain a column for which the user has SELECT
privilege will be included in this mapping. This mapping produces two XML documents, one that
contains the data in the table or tables that were specified, and another that contains an XML Schema that
describes the first document.” [10]

Major drawbacks of the standard are following:

• SQL/XML query requires detailed knowledge of the information source.
• SQL/XML query is written to run against relational structure and is not capable of querying a

generic GJXDD model (see example below). Nevertheless, SQL/XML can be effectively used in
the backend for implementation of other query engines as it is shown in Figure 5-1.

• SQL/XML is not extensible – current implementations do not allow introduction of additional
layers of abstraction for mapping between GJXDD and various database instances.

• SQL/XML query engine implementations do not exist for older database releases.

Enterprise A Enterprise B

Client (site)
App/web svr

Standard-to-
Proprietary Query

Transformer

Database

Site
Proprietary
Message

Standard
Query

Instance
SQL/XML
Instance

Site
Proprietary
Message

GJXDD
Instance

XML
Instance

Site
Proprietary
Message

Site
Proprietary
Message

Proprietary-to-
Standard Query

Transformer

Figure 5-1 - Query/Response Flow Using SQL/XML on the Backend

Even though SQL/XML is designed to run against a relational model, it is technically possible to use
SQL/XML as the generic query. A standard relational model would have to be developed that all

GTRI/ITTL/CSITD 2004 Draft Page 20

Georgia Tech Research Institute

implementers would generate queries against, similar to how XQuery utilizes GJXDD as the model to
query against. However, this relational model would have to be based upon GJXDD so that the resulting
data could be expressed as a GJXDD instance. Switching between relational in one direction and GJXDD
in the other could potentially make the mapping more difficult since the underlying database would have
to be mapped to both models. It seems much more practical to use SQL/XML on the backend.

5.2.2 Example
The Oracle XDK package takes an arbitrary SQL query and converts the results to XML. Here is a
hierarchical XML output example (taken from the Oracle Code Examples webpage), which shows the
master-detail output for the “emp” and “dept“ tables in Oracle’s sample database. This creates a
department element with a list of employees.

 SELECT XMLElement("Department",

 XMLForest (deptno "DeptNo", d.dname "DeptName", d.loc "Location"),
 (SELECT XMLAGG(XMLElement("Employee",

 XMLForest (e.empno "EmployeeId",
 e.ename "Name",

 e.job "Job",
 e.mgr "Manager",
 e.hiredate "Hiredate"),
 e.citezen "Citezen"))

 FROM emp e
 WHERE e.deptno = d.deptno))
 FROM dept d;

The resulting XML would look like:

<department>
 <deptno>23</deptno>
 <deptname>Accounting</deptname>
 <location>Campus</location>
 <employee>
 <employeeid>4568</employeeid >
 <name>George Burdell</name>
 <job>TA</job>
 <manager>John Wandelt</manager>
 <citizen>US</citizen>
 </employee>
</department>

5.2.3 Available Tools and Support

5.2.3.1 ORACLE XML SQL UTILITY (XSU)
XSU is comprised of core Java class libraries for automatically and dynamically rendering the results of
arbitrary SQL queries into canonical XML. XSU includes the following features:

• Supports queries over richly-structured user-defined object types and object views.
• Supports automatic XML Insert of canonically-structured XML into any existing table, view,

object table, or object view.

XSU Java classes can be used for the following tasks:

• Generate from an SQL query or result set object a text or XML document, a Document Object
Model (DOM), Document Type Definition (DTD), or XML Schema.

• Load data from an XML document into an existing database schema or view.

GTRI/ITTL/CSITD 2004 Draft Page 21

Georgia Tech Research Institute

Figure 5-2 shows how XSU processes SQL queries and returns the results as an XML document.

The structure of the resulting XML document is based on the
internal structure of the database schema that returns the query
results:

- Columns are mapped to top level elements
- Scalar values are mapped to elements with text-only content
- Object types are mapped to elements with attributes
appearing as sub-elements
- Collections are mapped to lists of elements

Figure 5-2 - Oracle XML SQL Utility (XSU)

XSU is compatible with older versions of Oracle (above 8.0.6).

XSU can be successfully used for implementation of query engines as a database SQL to XML adapter
for different Oracle information data sources.

5.2.3.2 ORACLE DATABASE SUPPORT FOR SQL/XML
The Oracle9i Database implements a number of standard-based functions enabling direct query of
relational data, returning XML documents using the emerging ANSI/ISA SQL/XML standard. Oracle
versions prior to 9i are not supported.

5.2.4 Conclusion
SQL/XML enables XML support for relational databases, creating a bridge between XML and relational
data. Implementers can create XML views of existing relational data and work with them as if they were
XML files – a feature which can be effectively used in the backend for implementation of other query
languages. However, SQL/XML cannot be used by itself as the primary query solution since it requires
extensive knowledge of the underlying database and there are no options for creating an abstraction later
to hide the underlying database. Development of a relational model of the GJXDD in order to use
SQL/XML as a generic query language does not seem practical. In addition, SQL/XML is only supported
in the latest releases of major databases and is not compatible with older database versions that may be in
use in the Justice community.

5.3 Justice XML Query Language (JXQL)

5.3.1 Overview
The Justice XML Query Language (JXQL) is a language devised by the Georgia Tech Research Institute
based upon an early version of the GJXDM. JXQL was designed to provide a mechanism to query
disparate data sources that may exist in the Justice community, regardless of the underlying database or
structure of the data source. A query application can use JXQL to build a query without any knowledge
of the data source since JXQL references GJXDD types and properties instead of data source fields.

GTRI/ITTL/CSITD 2004 Draft Page 22

Georgia Tech Research Institute

Knowledge of the underlying data source is pushed down to the responding application, where the
mapping between the GJXDD and the data source is handled. JXQL is defined as an XML schema, and
can therefore be validated by a standard XML validator. Other XML communities could use JXQL,
replacing the GJXDD component with their own data dictionary, as long as those communities adhered to
the concepts defined in the GJXDM. (I.e. the GJXDM defines a set of relationships between types and
properties; each type “has a” set of properties that define its nature, and each property exists because it is
a property of some type or types.)

The JXQL schema incorporates three schemas: criteria, weights and results. The criteria schema defines a
data set and fulfills two needs. It can be used to specify a query, containing criteria that the data must
meet to be in the set; such as people whose last names equal “Smith”. It can also be used to represent data
that cannot be represented using the GJXDD alone; such as a last name that starts with ‘S’. For the
purposes of this document, the descriptions and examples are limited to queries. The weights schema
allows the data set to be sorted based upon weights defined by the query originator. This also allows a
“best match” type of query where the results may include data that only matches some criteria instead of
all criteria. The results schema allows specification of the data to be returned, specified as types or
properties from the GJXDD.

The primary drawback to JXQL is that it was designed as part of a research effort, and as such has not
been visible outside the Justice XML community. In fact, many inside the Justice XML community may
not be aware of it. Even though JXQL could be used outside the Justice XML community, it is unlikely
that JXQL would gain sufficient momentum to become an industry-recognized standard like XQuery.
Therefore, JXQL would have to be considered a proprietary product. Any tools required for usage would
have to be developed from scratch. It should also note that the design was preliminary, and some details
were never completed.

The primary advantage to JXQL is that it was designed to handle the specific problem of defining a query
against disparate data sources that can be mapped to the GJXDM. Therefore it is a less complex language
than XQuery, which was designed to be a processing language against XML documents.

5.3.2 Example
The following example defines a relatively complex query looking for people using a search on last name
“Lee”, first name “Jung” whose residence is on a street “Main”. The JXQL instance also requires that
matches return the person’s last name, first name, middle name, date of birth, social security number,
height, hair color code and residence address data street name, city and state. This example does not
include the weights schema. It should be noted that this example was developed based on the older JXDD
3.0.0.1 pre-release.

<q:query
 xmlns:q="http://justicexml.gtri.gatech.edu/query/1/query"
 xmlns:c="http://justicexml.gtri.gatech.edu/query/1/criteria"
 xmlns:a="http://justicexml.gtri.gatech.edu/query/1/assembly"
 xmlns:justice="http://www.it.ojp.gov/jxdd/prerelease/3.0.0.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://justicexml.gtri.gatech.edu/query/1/query
 query.xsd">
 <c:instance>
 <c:variable name="A"/>
 <c:has-type type="justice:PersonType"/>

GTRI/ITTL/CSITD 2004 Draft Page 23

Georgia Tech Research Institute

 <c:has-property property="PersonName">
 <c:has-property property="justice:PersonSurName">
 <c:value-matches-caseless match="lee"/>
 </c:has-property>
 <c:has-property property="justice:PersonGivenName">
 <c:value-matches-caseless match="jung"/>
 </c:has-property>
 </c:has-property>
 <c:has-property property="justice:Residence">
 <c:has-property property="justice:LocationAddress">
 <c:has-property property="justice:AddressStreet">
 <c:value-matches-caseless-pattern match=".*main.*"/>
 </c:has-property>
 </c:has-property>
 </c:has-property>
 </c:instance>
 <a:result>
 <a:for-each select="A">
 <a:include-selected property="justice:PersonName">
 <a:include-selected property="justice:PersonSurName"/>
 <a:include-selected property="justice:PersonGivenName"/>
 <a:include-selected property="justice:PersonMiddleName"/>
 </a:include-selected>
 <a:include-selected property="justice:PersonBirthDate"/>
 <a:include-selected property="justice:PersonSocialSecurityNumber"/>
 <a:include-selected property="justice:PersonPhysicalDetails">
 <a:include-selected property="justice:PersonHeightMeasure"/>
 <a:include-selected property="justice:PersonHairColorCode"/>
 </a:include-selected>
 <a:include-selected property="justice:Residence">
 <a:include-selected property="justice:LocationAddress">
 <a:include-selected property="justice:AddressStreet"/>
 <a:include-selected property="justice:AddressCityName"/>
 <a:include-selected property="justice:AddressStateName"/>
 </a:include-selected>
 </a:include-selected>
 </a:for-each>
 </a:result>
</q:query>

5.3.3 Available Tools and Support
This is a proprietary language, so there are no tools specific to JXQL. However, since JXQL is XML,
XML parsers and validators can be used against instances.

5.3.4 Conclusion
JXQL represents an XML query language that is targeted at the Justice community with their
requirements to search disparate data sources. JXQL was designed to eliminate the need for the generator
of the query to have any knowledge of the underlying data source, so that a query application could query
many data sources without having to customize the query for each source. The drawback to JXQL is that
it may not be utilized outside the Justice XML community, requiring those utilizing JXQL to develop all
tools required to implement complete solutions.

GTRI/ITTL/CSITD 2004 Draft Page 24

Georgia Tech Research Institute

5.4 OWL-QL (Formerly DQL – DAML Query Language).
Website: http://ksl.stanford.edu/projects/owl-ql/
Company: Stanford Knowledge Systems Laboratory
License: n/a.

5.4.1 Overview
OWL-QL is being developed by the SKSF and the members of Joint United States/European Union ad
hoc Agent Markup Language Committee. The query language has emerged from the DAML Query
Language and probably will be a winning candidate for “standard language and protocol for query-
answering dialogues among Semantic Web computational agents”. While OWL-QL is designed for query
of the Semantic Web and to be used with OWL, the language is extremely flexible and is capable of
querying RDF/RDFS model as well. The current OWL-QL specification is using XML syntax format for
query expression. However, the specification provides an outline for structural format of the language
only, reserving the space for many different syntactic forms.

Details on this language can be found in the paper by Richard Fikes, Pat Hayes, Ian Horrocks: “OWL-QL
- A Language for Deductive Query Answering on the Semantic Web”, which can be found at:
ftp://ftp.ksl.stanford.edu/pub/KSL_Reports/KSL-03-14.pdf.gz

5.4.2 Examples
Q: “Find all people who own red car”

Q: (owns ?p ?c) (type ?c Car) (has-color ?c Red)
 must-bind ?p don't-bind ?c
A: (exists ?c (and (owns Joe ?c) (type ?c Car) (has-color ?c Red)))

<owl-ql:query xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"
 xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">
 <owl-ql:queryPattern>
 <rdf:RDF>
 <rdf:Description rdf:about="http://www.w3.org/2003/10/owl-ql-variables#p">
 <owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
 </rdf:Description>
 <Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">
 <has-color rdf:resource="#Red"/>
 </Car>
 </rdf:RDF>
 </owl-ql:queryPattern>
 <owl-ql:mustBindVars>
 <var:p/>
 </owl-ql:mustBindVars>
 <owl-ql:answerKBPattern>
 <owl-ql:kbRef rdf:resource="http://joedata/joe.owl"/>
 </owl-ql:answerKBPattern>
 <owl-ql:answerSizeBound>5</owl-ql:answerSizeBound>
</owl-ql:query>

<owl-ql:answerBundle xmlns:owl-ql="http://www.w3.org/2003/10/owl-ql-syntax#"
 xmlns:var="http://www.w3.org/2003/10/owl-ql-variables#">
 <owl-ql:queryPattern>
 <rdf:RDF>
 <rdf:Description rdf:about="http://www.w3.org/2003/10/owl-ql-variables#p">
 <owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
 </rdf:Description>
 <Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">

GTRI/ITTL/CSITD 2004 Draft Page 25

http://ksl.stanford.edu/projects/owl-ql/

Georgia Tech Research Institute

 <has-color rdf:resource="#Red"/>
 </Car>
 </rdf:RDF>
 </owl-ql:queryPattern>
 <owl-ql:answer>
 <owl-ql:binding-set>
 <var:p rdf:resource="#Joe"/>
 </owl-ql:binding-set>
 <owl-ql:answerPatternInstance>
 <rdf:RDF>
 <rdf:Description rdf:about="#Joe">
 <owns rdf:resource="http://www.w3.org/2003/10/owl-ql-variables#c"/>
 </rdf:Description>
 <Car rdf:ID="http://www.w3.org/2003/10/owl-ql-variables#c">
 <has-color rdf:resource="#Red"/>
 </Car>
 </rdf:RDF>
 </owl-ql:answer>
 <owl-ql:continuation>
 <owl-ql:none/>
 </owl-ql:continuation>
</owl-ql:answerBundle>

5.4.3 Available Tools and Support
Tools and support are meager at best. The OWL-QL author provides an XML Schema definition for the
language syntax. He also presents numerous example queries, which can be run on the java based web
application (.war file) prototype or via Java API supplied in the form of library archive. However, the
author does not release source code for the application prototype.

5.4.4 Conclusion
At the present, there is no official submission to the W3C for OWL-QL language standardization;
however it seems likely that OWL-QL will become a standard language for Semantic Web Query. OWL-
QL has a long road ahead and would require additional customization for querying GJXDM model.

5.5 QEL (Query Exchange Language)
Company: SUN Microsystems
Project: JXTA/Edutella
Website: http://edutella.jxta.org
License: The Sun Project JXTA Software License

5.5.1 Overview
QEL is being developed by SUN Microsystems for collaboration on JXTA Peer-To-Peer (P2P) networks.
The language is part of the Edutella P2P project. “QEL is used to express queries against data sources
using the Resource Description Framework (RDF).” QEL is based on relational calculus and has a
predicate expression as a basic language construct. Predicate expressions consist of a predicate symbol,
followed by an argument list (for example owner(“Red Car”, “John Doe”)). QEL uses RDF syntax for
database queries, which are expressed in predicate logic and are very similar to classical Prolog
expressions. Currently, the language provides a number of build-in predicates to be used for RDF query,
such as “qel:s” – used to match RDF triples, “qel:nodeType” – used to test RDF container membership,
“qel:equals” – used to determine if two RDF nodes are the same, “qel:stringValue” – used to test the
string value of an RDF literal, ignoring any language or datatype. The language explicitly specifies the

GTRI/ITTL/CSITD 2004 Draft Page 26

http://edutella.jxta.org/

Georgia Tech Research Institute

form or the result set. “Results in QEL are returned in a tabular format, one row at a time. This makes it
possible to return results in independent batches.”

The QEL specification does not enforce implementation of all listed constructs and provides a list of
actions to be taken by the system if the query is not supported. The specification also provides the
vocabulary for description of the query capabilities implemented by the model. For example QEL
implementations will be capable of reporting whether it can support “like”, “equals”, “greaterThan”, or
“member” build in queries. However, it is not clear whether the language can be extended with the new
predicates, such as “soundex”, “begins-with”, etc.

5.5.2 Examples:
<!--
name(P,N) :-
qel:s (P, <jxdm:name>, N)
qel:s(C, <jxdm:color>, "red")
qel:s(C, <jxdm:owner>, P),
-->
<rdf:RDF>

 <qel:Rule rdf:nodeID="rule1">
 <qel:head>
 <qel:QueryLiteral rdf:nodeID="nameliteral">
 <qel:predicate rdf:nodeID="name"/>
 <qel:arguments>
 <rdf:Seq>
 <rdf:li rdf:nodeID="P"/>
 <rdf:li rdf:nodeID="N"/>
 </rdf:Seq>
 </qel:arguments>
 </qel:QueryLiteral>
 </qel:head>

 <!-- Reuse literal from above -->
 <qel:literal rdf:nodeID="rs1">

 <qel:outerJoinLiteral>
 <qel:StatementLiteral>
 <rdf:subject rdf:nodeID="X"/>
 <rdf:predicate rdf:resource="&jxdm;name"/>
 <rdf:object rdf:nodeID="N"/>
 </qel:StatementLiteral>
 </qel:outerJoinLiteral>
 <qel:StatementLiteral>
 <rdf:subject rdf:nodeID="C"/>
 <rdf:predicate rdf:resource="&jxdm;owner"/>
 <rdf:object rdf:nodeID="P"/>
 </qel:StatementLiteral>
 </qel:outerJoinLiteral>
 <qel:StatementLiteral>
 <rdf:subject rdf:nodeID="C"/>
 <rdf:predicate rdf:resource="&jxdm;color"/>
 <rdf:object rdf:nodeID="red"/>
 </qel:StatementLiteral>
 </qel:outerJoinLiteral>
 </qel:Rule>

</rdf:RDF>

GTRI/ITTL/CSITD 2004 Draft Page 27

Georgia Tech Research Institute

5.5.3 Available Tools and Support
Sun Microsystems has started the Edutella project as “RDF-based Metadata Infrastructure for P2P
Applications”. Project has released several application prototypes, however they are based solely on RDF
data sources, and the currently do not support connection to a back end database.

5.5.4 Conclusion
The QEL language provides a solid framework and functionality for RDF model queries, and can be used
for GJXDM queries as well. At the present moment the language specification is not complete. There is
no implementation that would provide the translation of the QEL queries to native database queries based
on the defined mapping between RDF model and existing RDB schema. Since it has been designed for
collaboration on P2P network, it is not clear whether QEL will become a standard RDF query language.

5.6 SQL-like RDF query languages (RDQL, SquishQL, rdfDB, RQL, SeRQL).
Language: rdfDB
Project: rdfDB
Website: http://guha.com/rdfdb/
License: Mozilla Public License 1.0 (MPL)

Language: SquishQL
Company: Hewlett Packard
Project: Inkling
Website: http://swordfish.rdfweb.org/rdfquery/
License: GPL License

Language: RDQL (RDF Data Query Language), SquishQL
Company: Hewlett Packard
Project: Jena
Website: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
 http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/index.html
License: BSD License

Language: RQL (RDF Query Language)
Company: ICS-FORTH - Greece
Website: http://139.91.183.30:9090/RDF/RQL/

Language: SeRQL (Sesame RDF Query Language)
Project: Sesame (http://www.openrdf.org/)
Website: http://www.openrdf.org
Company: Aduna
License: GNU Library or Lesser General Public License (LGPL)

5.6.1 Overview

In November 1998, the W3C posted a position paper on Query Languages and specified a query
framework for RDF – subgraph matching. [18] As result of this, several RDF query languages have
emerged. The language developed first was rdfDB – a simple SQL-like query language, designed by
Ramanathan V. Guha for the rdfDB open-source database. rdfDB served as a basis for development of a

GTRI/ITTL/CSITD 2004 Draft Page 28

http://guha.com/rdfdb/
http://swordfish.rdfweb.org/rdfquery/
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.hpl.hp.com/semweb/doc/tutorial/RDQL/index.html
http://www.ics.forth.gr/
http://139.91.183.30:9090/RDF/RQL/
http://www.openrdf.org/
http://www.openrdf.org/

Georgia Tech Research Institute

more advanced RDF query language called SquishQL by the Information Infrastructure Laboratory at
Hewlett Packard in April 2002. [20] SquishQL has incorporated a majority of the features available in
rdfDB and added new options such as an optional ‘FROM’ clause, a new notation for shortened
namespaces, and patterns and constraints clauses for result filtering. SquishQL syntax was implemented
in Inkling RDF query engine with PostgreSQL as backend support. Later, SquishQL was integrated with
Jena Semantic Web applications framework and received a new name – RDQL. RDQL served as a source
for member language submission to W3C in January 2004 by Hewlett Packard.

RDQL has data-oriented model queries and does not support inference – RDQL system does not infer
new RDF statements based on the conclusion from other RDF statements. “RDQL provides a way of
specifying a graph pattern that is matched against the graph to yield a set of matches. It returns a list of
bindings - each binding is a set of name-value pairs for the values of the variables. All variables are
bound (there is no disjunction in the query).” [19] Being extremely generic, the W3C submission does
not specify mechanisms for extending the language.

SeRQL RDF query language introduced the next step in the evolution of the RDQL language by adding
support for subClassOf and subPropertyOf, allowing simple inferences. SeRQL is being developed by
Aduna as part of the Sesame project. “It combines the best features of other (query) languages (RQL,
RDQL, N-Triples, N3) and adds some of its own. The important features are:

- Graph transformation.
- RDF Schema support.
- XML Schema datatype support.
- Expressive path expression syntax.
- Optional path matching.”

Following the similar path of introducing inferences, another language is being developed by the Institute
of Computer Science FORTH academic community – RQL. “RQL is a typed language following a
functional approach (a la ODMG-OQL). RQL supports generalized path expressions (GPE) featuring
variables on both labels for nodes (i.e., classes) and edges (i.e., properties). RQL relies on a formal graph
model (as opposed to other triple-based RDF QLs) that captures the RDF modeling primitives and
permits the interpretation of superimposed resource descriptions by means of one or more schemas.

The novelty of RQL lies in its ability to smoothly combine schema and data querying while exploiting the
taxonomies of labels and multiple classification of resources, using advanced pattern-matching facilities
(i.e. GPEs). The RQL Interpreter has been implemented in C++ on top of an object oriented database
using standard client-server architecture for Solaris and Linux platforms. It consists of four modules (a)
the Parser, analyzing the syntax of queries; (b) the Graph Constructor, capturing the semantics of queries
in terms of typing and interdependencies of involved expressions; (c) the SQL Translator, which rewrites
RQL to efficient SQL queries; and (d) the Evaluation Engine, accessing the underlying database via SQL
queries.”

5.6.2 Examples
Q: “Find all people who own red car”

RDQL:

SELECT ?person, ?name
WHERE (?person, <jxdm:FullName>, ?name),

GTRI/ITTL/CSITD 2004 Draft Page 29

Georgia Tech Research Institute

 (?car, <jxdm:Owner>, ?person),
 (?car, <jxdm:Color>, “red”)
USING jxdm FOR http://justicexml.gtri.gatech.edu/3.0#

SeRQL:

SELECT DISTINCT
 Person, Name
FROM
 {Person} <jxdd:name > {} {Name} ,
 {Car} <jxdd:color> {} <Color> ,
 {Car} <jxdd:owner> {Person}
WHERE
 isLiteral(Color) AND
 lang(Color) = "en" AND
 label(Color) LIKE "*Red*"
USING NAMESPACE
 jxdd = <!http://justicexml.gtri.gatech.edu/3.0/>

5.6.3 Available Tools and Support
See list of projects in the beginning of the section. SeRQL appears to be the only language for which a
commercial product is available, and there is only one product.

5.6.4 Conclusion
From the evolution of SQL-like RDF query languages, it is clear that inference enabled languages
(SeRQL, RQL) eventually will take over from their predecessors (RDQL, SquishQL). The current
submission to W3C does not provide any guarantee that RDQL language will become an RDF query
language standard due to lack of important features. The RQL language represents a prototype that has
emerged from the academic community, while SeRQL is already integrated in the corporate environment
and is used in the commercial applications.

5.7 Turtle - Terse RDF Triple Language
Company: Institute for Learning and Research Technology University of Bristol
Website: http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/
Project: Redland RDF Application Framework (http://www.redland.opensource.ac.uk/)
License: LGPL, Mozilla Public License V1.1

5.7.1 Overview
Formerly: N-Triples Plus. Turtle is an extension of N-Triples. Project architect Dave Beckett participates
in the development of Jena Semantic Web Framework and plans implementation of RDQL in the Redland
framework.

5.7.2 Example
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix jxdm: <http://example.org/jxdm/3.0/>.
<http://www.w3.org/TR/rdf-syntax-grammar>
 jxdm:Car [
 jxdm :Color "Red";
 jxdm :Owner [

 jxdm :PersonName [

GTRI/ITTL/CSITD 2004 Draft Page 30

http://justicexml.gtri.gatech.edu/3.0
http://www.ilrt.bris.ac.uk/
http://www.bristol.ac.uk/
http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/
http://www.redland.opensource.ac.uk/

Georgia Tech Research Institute

 jxdm :PersonFullName "John Doe";
]
]
].

5.7.3 Available Tools and Support
The Turtle RDF query language is implemented on the Redland RDF Application Framework which is
written in C. Author claims that the project was successfully compiled and run on all major OSes. Turtle
has interfaces for all major programming languages such as Perl, Python, Tcl, Java, Ruby, and PHP.

5.7.4 Conclusion
The Turtle language appears to represent mostly academic interest and there is no evidence that language
will become the RDF/Semantic Web query standard.

5.8 D2R (Database 2 RDF Map)
Website: http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm
Company: Freie Universität Berlin
License: GNU LGPL

5.8.1 Overview
“D2R MAP is a declarative language to describe mappings between relational database schemata and
OWL ontologies. The mappings can be used by a D2R processor to export data from a relational database
into RDF.” The project specification claims that the D2R processor prototype is capable of exporting
data as RDF, N3, N-TRIPLES and Jena models. Also, the prototype is compliant with all relational
databases offering JDBC or ODBC access and is implemented in Java, Jena API.

5.8.2 Example
<d2r:Map d2r:versionInfo="$Id: eShopDB.Map.d2r, v 1.0 2003/01/20 19:44:09 Chris Exp $">
 <!-- <d2r:ProcessorMessage d2r:outputFormat="N3"/> -->
 <!-- <d2r:ProcessorMessage d2r:outputFormat="RDF/XML-ABBREV"/> -->
 <d2r:DBConnection d2r:odbcDSN="eShopDB"/>
 <d2r:Namespace d2r:prefix="eShop" d2r:namespace="http://www.wiwiss.fu-berlin.de/suhl/bizer/eShop/eShop#"/>
 <d2r:Namespace d2r:prefix="rdf" d2r:namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
 <!-- Categories -->
 <d2r:ClassMap d2r:type="eShop:category" d2r:sql="SELECT catid, catname, description FROM categories" d2r:groupBy="catid">
 <d2r:DatatypePropertyBridge d2r:property="eShop:name" d2r:column="catname"/>
 <d2r:DatatypePropertyBridge d2r:property="eShop:description" d2r:pattern="Description of Category '@@catname@@':
@@description@@."/>
 </d2r:ClassMap>
 <!-- CDs -->
 <d2r:ClassMap d2r:type="eShop:cd" d2r:sql="SELECT article.articleno, interpret, album, coverlink, category, trackno, price FROM
article, tracks where article.articleno = tracks.articleno and offer=True" d2r:groupBy="article.articleno"
d2r:uriPattern="eShop:CdNo@@article.articleno@@">
 <d2r:DatatypePropertyBridge d2r:property="eShop:interpret" d2r:column="article.interpret"/>
 <d2r:DatatypePropertyBridge d2r:property="eShop:album" d2r:column="article.album"/>
 <d2r:DatatypePropertyBridge d2r:property="eShop:price" d2r:pattern="$ @@price@@"/>
 <d2r:ObjectPropertyBridge d2r:property="eShop:cover" d2r:pattern="http://www.wiwiss.fu-
berlin.de/suhl/bizer/eShop/images/@@article.coverlink@@"/>
 <d2r:ObjectPropertyBridge d2r:property="eShop:category" d2r:referredClass="eShop:category" d2r:referredGroupBy="category"/>
 <d2r:ObjectPropertyBridge d2r:property="eShop:track" d2r:referredClass="eShop:track" d2r:referredGroupBy="articleno,trackno"/>
 </d2r:ClassMap>
 <!-- Tracks -->

GTRI/ITTL/CSITD 2004 Draft Page 31

http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm

Georgia Tech Research Institute

 <d2r:ClassMap d2r:type="eShop:track" d2r:sql="SELECT articleno, trackno, name FROM tracks" d2r:groupBy="articleno, trackno"
d2r:uriPattern="eShop:track@@articleno@@-@@trackno@@">
 <d2r:DatatypePropertyBridge d2r:property="eShop:name" d2r:column="name"/>
 </d2r:ClassMap>
</d2r:Map>

5.8.3 Available Tools and Support
D2R has a working prototype available at the project web site.

5.8.4 Conclusion
The language is essentially an RDF version of SQLXML – “Send SQL query to RDBMS, Receive RDF
back”. This represents the major problem for the GJXDM domain – this language is tightly coupled to
the backend database. The queries are database specific and should be formulated against particular
database implementation, not against GJXDM or any other desired abstract model. Therefore, language
does not appear to be useful in conjunction with GJXDM.

5.9 Versa
Versa
Website: http://uche.ogbuji.net/tech/rdf/versa/

http://uche.ogbuji.net/tech/rdf/versa/versa.doc?xslt=/ftss/data/docbook_html1.xslt
http://4suite.org/index.xhtml

Project: 4Suite
Company: N/A
License: N/A

5.9.1 Overview
Versa is an RDF query language based on the graph data model and developed by Uche Ogbuji. Versa
query language is modeled after XPath and follows functional paradigm (LISP look alike). Queries in
Versa are traversal expressions and allow forward and backward processing of arcs, node content
filtering, and general expression evaluation. Versa includes support for aggregate functions, sorting
functions, and has build in data conversion functions.

5.9.2 Examples
head(h:FullName(type(h:Car) - dc:Color -> eq("Red") - h:Person -> *))

5.9.3 Available Tools and Support
Currently there is no prototype available for the Versa language.

5.9.4 Conclusion
This is interesting as an academic language. It does have more match capabilities than some of the other
RDF query languages, although exactly what it has is unclear since it is still under development.

GTRI/ITTL/CSITD 2004 Draft Page 32

Georgia Tech Research Institute

5.10 Other Languages
These languages have not yet been reviewed. None have been submitted to the W3C. Versa, like
SeRQL, seems to have more match capabilities than other RDF query languages.

Buchingae, LogicML (Another Rule-Markup Language)
Website: http://mknows.etri.re.kr/bossam/docs/logicml.html
Project: Bossam

KAON
Website: http://kaon.semanticweb.org/

http://wim.fzi.de:8080/kaon/readme.html
Project: KAON
Company: FZI, AIFB
License: LGPL

Algae2
Website: http://www.w3.org/1999/02/26-modules/User/Algae-HOWTO.html
Project:
Company:
License:

GTRI/ITTL/CSITD 2004 Draft Page 33

http://mknows.etri.re.kr/bossam/docs/logicml.html
http://kaon.semanticweb.org/
http://wim.fzi.de:8080/kaon/readme.html
http://www.w3.org/1999/02/26-modules/User/Algae-HOWTO.html

Georgia Tech Research Institute

6 Comparison of Query Languages
This chapter summaries the advantages and disadvantages of the reviewed query languages. The table
below shows how languages compare on query features. Note that there are two columns for XQuery:
one for the current working draft (1.0) and one that includes proposed features for the next version (which
we have labeled as 1.x). All of the RDF query languages, except SeRQL, have the same query features,
and are combined into one column.

Match Capability JXQL XQuery 1.0 XQuery 1.x OWL-QL

SeRQL
Other RDF
Languages

Exact on a single field Yes Yes Yes Yes Yes Yes
OR Yes Yes Yes Yes Yes Yes
Soundex (Text) Yes No Yes No No No
Begins with (text) Yes Yes Yes No Yes No
Ends with (text) Yes Yes Yes No Yes No
Contains (text) Yes Yes Yes No Yes No
Range (dates/numbers) Yes Yes Yes No Yes No
Diminutive (names) Yes No Yes No No No
All fields must match Yes Yes Yes Yes Yes Yes
Best match - weights Yes No Yes No No No

Figure 6-1 – Supported Search Features

SQL/XML is not a reasonable solution for the Justice community due to the requirement that queries be
written against a relational data model, although it may be useful on the backend.

XQuery is a W3C working draft that already have industry support, in the form of tools, middleware and
database support. This is the most mature of the query languages. XQueryX may be easier to use than
XQuery, since the XML syntax allows the use of existing XML tools and bindings, although there is not
currently much industry support for this syntax. XQuery is very powerful, but also very complex. The
complexity could be mitigated through the use of templates that limit what features can be stated in a
query. XQuery’s missing query features, such as weights and soundex, are expected to be addressed in
later versions of the specification. In the interim, there are workarounds for soundex and diminutive.

JXQL was designed from scratch with GJXDD in mind. It is simpler than XQuery, but still supports all
query features. However, the drawback to JXQL is that it may not be utilized outside the Justice XML
community, requiring those utilizing JXQL to develop all tools required to implement complete solutions.

Most of the remaining query languages are very generic. Other than SeRQL, none provide very many
match capabilities, such as are found in query languages like SQL. For example, you cannot state a
question where you want to match on a partial word (i.e. find a person whose first name starts with ‘B’).
RDQL is the only one that has been submitted to the W3C, and that submission was in January, so even if
it eventually becomes a standard, it will be years. In fact, SeRQL is based on RDQL, so RDQL does not
even appear to be the most advanced RDF query language. RQL and SeRQL are the only RDF or OWL
query languages that actually have products that can be downloaded and used for real projects. However,
these are proprietary products and are not supported by any major vendors.

GTRI/ITTL/CSITD 2004 Draft Page 34

Georgia Tech Research Institute

7 Conclusions
It appears that templates and a query language have different roles in the information-sharing realm. Both
fit certain needs, and we believe the Justice community would be well served by supporting both.

In terms of templates, the development of a standard template syntax is desirable; something that handles
simple queries and does not become a full-blown language definition. It would be beneficial to base these
templates on XML-syntax, unlike the rudimentary examples earlier in this paper.

We cannot make any definitive recommendations at this time on what the Justice XML community
should use as a standard query language. Out of the reviewed query languages, only XQuery (and its
XQueryX sibling) can be considered an industry standard – and they are only in the late working draft
stage and cannot be considered mature. However, no other query language will reach XQuery’s level of
maturity and industry support for years. RDQL has been proposed to the W3C, but is not even in the
working draft stage. XQuery is very complex, and if it is selected as the GJXDM-standard query
language, templates should be supported for simpler needs. The RDF and OWL query languages are new
and no standard has emerged in that domain. So if the JusticeXML community selects an RDF or OWL
language for use now, that will essentially tie the GJXDM to a proprietary solution since even if the
Justice XML community picks the language that ends up being selected as the standard, the language is
certain to change before the standard is completed. Since it may be years before an RDF or OWL
standard query language emerges, picking any of the RDF or OWL candidates now seems to be a very
high risk position. SeRQL has the potential for immediate use, since there are products available and
development is being supported by the open source community and a commercial company. But SeRQL
has not been proposed to the W3C as a standard, so using it would still seem to tie the Justice XML
community into a proprietary solution.

The Justice XML community could also develop their own query language, either starting from the
preliminary work on JXQL, or by starting with one of the other reviewed query languages. This effort
will take time, and will require a great deal of collaboration to ensure that the language is powerful
enough to handle any queries that are expected to be required. If a simple enough language could be
devised, templates may not need to be supported. However, we would also have to guard against
“feature-creep” to avoid developing a language that even more complex than XQuery. While
development of a Justice-specific query language appears desirable on the surface, evaluators need to
keep in mind the effort required, and the fact that development of this language would revisit a lot of the
same ground already covered by the designers of the reviewed query languages. So we may end up
reinventing the wheel.

XQuery or XQueryX appear to be the best solution for implementers who are going to need something in
the next few years. Resolution for shortcomings in the match capabilities are planned for later releases,
and workarounds are available for soundex and diminutive. The complexity of XQuery can be reduced
by limiting the features to be used in GJXDM queries, although some effort will have to be expended to
determine how best to limit queries. Further review of XQuery versus XQueryX may also be practical
since the latest update to XQueryX is so new. While industry support is broader for XQuery, the use of
XML syntax in XQueryX may still make it the more usable language.

In order to facilitate information sharing across enterprises, the Justice XML community may want to
consider selecting a single method for the representation of relationships. Even with a standard query

GTRI/ITTL/CSITD 2004 Draft Page 35

Georgia Tech Research Institute

language or templates, if a query is stated using one relationship mechanism, a responder that uses a
different relationship mechanism may not be able to respond.

GTRI/ITTL/CSITD 2004 Draft Page 36

Georgia Tech Research Institute

8 References
1. Databases, Query, API, Interfaces report on Query languages (2003-04-01).
 http://www.w3.org/2001/sw/Europe/reports/rdf_ql_comparison_report/

2. W3C: XQuery 1.0 – An XML Query Language http://www.w3.org/TR/xquery/

3. W3C: XML Syntax for XQuery 1.0 (XQueryX) http://www.w3.org/TR/xqueryx

4. JSR 225: XQuery API for JavaTM (XQJ); http://www.jcp.org/en/jsr/detail?id=225

5. W3C: XML Query Use Cases http://www.w3.org/TR/xquery-use-cases/

6. IBM: XML for Tables http://www.alphaworks.ibm.com/tech/xtable

7. IBM: XTABLES: Bridging relational technology and XML
 http://www.research.ibm.com/journal/abstracts/sj/414/fan.html
 http://www.research.ibm.com/journal/sj/414/funderburk.pdf

8. BEA: BEA Liquid Data for WebLogic™ http://edocs.bea.com/liquiddata/docs81/index.html

9. XSQL Group: SQL/XML http://sqlx.org

10. Oracle: Oracle Technology Network (OTN) http://www.otn.oracle.com

11. “Querying XML documents” Miller, J.A. Sheth, S. Department of Computer Science, University of

Georgia, Athens, GA; Potentials, IEEE, Feb/Mar 2000; On page(s): 24-26; Volume: 19, Issue: 1 ;
ISSN: 0278-6648; CODEN: IEPTDF; INSPEC Accession Number: 6540107

12. “Bidirectional conversion between XML documents and relational databases” Jacinto, M.H.;

Librelotto, G.R.; Ramalho, J.C.; Henriques, P.R.; Computer Supported Cooperative Work in Design,
2002. The 7th International Conference on CSWD Design, 25-27 Sept. 2002 Page(s): 437 -443.

13. Some XQuery Implementations:
 GALAX http://www-db.research.bell-labs.com/galax/
 XQEngine http://www.fatdog.com/
 Qexo http://www.gnu.org/software/qexo/
 Ipedo http://www.ipedo.com/

14. Mapping Semantic Web Data with RDBMSes (2003-01-23).
 http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/

15. “The Semantic Web: A Guide to the Future of XML, Web Services, and Knowledge Management.”

Michael C. Daconta, Leo J. Obrst and Kevin T. Smith: (Wiley 2003).

16. Libby Miller: RDF Query and Rules: A Framework and Survey (2001-
 http://www.w3.org/2001/11/13-RDF-Query-Rules/

GTRI/ITTL/CSITD 2004 Draft Page 37

http://www.w3.org/2001/sw/Europe/reports/rdf_ql_comparison_report/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xqueryx
http://www.jcp.org/en/jsr/detail?id=225
http://www.w3.org/TR/xquery-use-cases/
http://www.alphaworks.ibm.com/tech/xtable
http://www.research.ibm.com/journal/abstracts/sj/414/fan.html
http://www.research.ibm.com/journal/sj/414/funderburk.pdf
http://edocs.bea.com/liquiddata/docs81/index.html
http://sqlx.org/
http://www.otn.oracle.com/
http://www-db.research.bell-labs.com/galax/
http://www.fatdog.com/
http://www.gnu.org/software/qexo/
http://www.ipedo.com/
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report/
http://www.w3.org/2001/11/13-RDF-Query-Rules/

Georgia Tech Research Institute

17. “OWL Web Ontology Language Overview”, Deborah L. McGuinness, Frank van Harmelen; Feb 10,

2004. http://www.w3.org/TR/owl-features/

18. R.V. Guha, Ora Lassila, Eric Miller, Dan Brickley, Enabling Inference, W3C Query Language
Meeting, Boston, Dec 3-4, 1998 http://www.w3.org/TandS/QL/QL98/pp/enabling.html

19. Jena Semantic Web Framework http://jena.sourceforge.net/index.html

GTRI/ITTL/CSITD 2004 Draft Page 38

http://www.w3.org/TR/owl-features/
http://www.w3.org/TandS/QL/QL98/pp/enabling.html
http://jena.sourceforge.net/index.html

	Introduction
	Cross-Enterprise Information Sharing Issues
	Query Mechanisms
	Templates
	Usage
	Processing

	Language
	Usage
	Processing

	Decision Points: Templates versus Language

	Query Language Layers
	RDF and RDF Query
	OWL Web Ontology Language

	Query Language Review
	XQuery/XQueryX
	Overview
	Example
	Available Tools and Support
	ORACLE OJXQI
	IBM XML FOR TABLES
	IBM XML EXTENDER/NET.DATA
	BEA LIQUID DATA FOR WEBLOGIC

	Conclusion

	SQL/XML
	Overview
	Example
	Available Tools and Support
	ORACLE XML SQL UTILITY (XSU)
	ORACLE DATABASE SUPPORT FOR SQL/XML

	Conclusion

	Justice XML Query Language (JXQL)
	Overview
	Example
	Available Tools and Support
	Conclusion

	OWL-QL (Formerly DQL – DAML Query Language).
	Overview
	Examples
	Available Tools and Support
	Conclusion

	QEL (Query Exchange Language)
	Overview
	Examples:
	Available Tools and Support
	Conclusion

	SQL-like RDF query languages (RDQL, SquishQL, rdfDB, RQL, Se
	Overview
	Examples
	Available Tools and Support
	Conclusion

	Turtle - Terse RDF Triple Language
	Overview
	Example
	Available Tools and Support
	Conclusion

	D2R (Database 2 RDF Map)
	Overview
	Example
	Available Tools and Support
	Conclusion

	Versa
	Overview
	Examples
	Available Tools and Support
	Conclusion

	Other Languages

	Comparison of Query Languages
	Conclusions
	References

